Beyond Petroleum
When I was last at my parents house in Suffolk I picked up a few DVDs to watch during my spare time in Bristol. On my way to digging out 'Withnail and I' from this pile last week I stumbled upon Al Gore's An Inconvenient truth. I'd obviously picked this up by mistake, but I must have been in the mood for science, as I quickly forgot any desire I'd had to see Richard E. Grant getting utterly drongoed for 80 minutes, and instead slipped the Gore disc into the set.
Whilst I didn't really warm to the Americanism of the whole thing, I really think you have to give credit where it's is due. Gore performs his slideshow excellently (as well he might, since, as he says repeatedly [insert American drawl here] 'I must have given this slideshow a thousand times') and certainly leaves the viewer with no doubt that climate change is real and that CO2 causes it.
It was with mixed feelings then that I strolled down a corridor in the University of Bristol this week to listen to a lecture by BPs chief Chemist, Vernon Gibson FRS [1]. Gore's film had temporarily filled me with a zeal to 'do the right thing' although I wasn't quite sure what that could be. Being British, I had some vague idea that a good way to start would be to write to my MP and tell him how exceedingly strongly I felt about the issues..
'Vern'
He's read ALL those books, you know.
Well, perhaps Vernon's lecture would provide some more concrete ideas about how we can stop killing the planet. Well, maybe. I had no idea what to expect.
In the event the talk was great. What I liked about listening to Vernon was that it was clear he wasn't making anything up - which is refreshing when the media is a minefield of outrageous environmental claims at the moment. BP has employed him to study climate change data in depth and he has a very accurate idea of what can realistically be done about it.
Bearing this in mind I felt like it might be useful to relate some of the more interesting points - the gems, if you will - that he brought up here on benchtwentyone. For once we can listen to some views on climate change policy and be sure they're scientifically sound.
The gems:
We don't need to worry about running out of fossil fuels.
This was a big surprise to me as I was always taught by my teachers at high school that we would have run out of oil by about 2015. This is decidedly not the case. BP estimates that we have enough oil left on the planet for another 42 years and enough coal for about 133 years. What we do need to worry about are issues like security of supply - the North sea is just about out of oil, and in the future we will depend on oil from the Former Soviet Union or the Middle East. This means oil will become extremely expensive within a decade or so.
Renewable energy introduction can't happen quickly.
At the moment energy production from renewable sources is growing by around 8% a year which is actually pretty quick. Unfortunately, since the demand for energy is also increasing in strides it will be impossible for us to become completely secure in these sources in the forseeable future. BP forcasts that by 2030 around 30% of our energy will come from renewables - this won't cut it. What we need instead is a decisive change in government policy to make us change and more importantly make businesses change.
Realsitically, this won't happen. In fact vernon advocates building more coal power stations. He actually stated that due to the depletion of North Sea oil and nuclear power stations like Sizewell B reaching the end of their safe working lifetimes 'the lights will go out if we don't build them'. To remedy this it is absolutely vital that we start capturing the carbon emitted from these behemoths using carbon capture and storage (CCS) technology. Companies won't invest in these systems (which cost billions of pounds) without incentives though, so governments should start legislating to put these in place.
We need new infrastructure.
At the moment we have oil pipelines which provide a relatively cheap and secure way of getting fuel to where it's needed. Any switch to different forms of fuel will entail new infrastructure. BP have calculated various different options and most come out at costing $3 trillion a year to implement.
Windfarms - a lot of hot air.
Windfarms are not ideal as a long term solution. An area the size of a football pitch can hold 2 windturbines - this may not sound too bad, but when we consider that 1 coal-fired power station produces the same amount of energy as 350 windturbines operating at full power (and they don't do this very often) we begin to see that we would need to cover Belgium in windturbines to supply all of France, say. (I'm not sure I see the problem Vernon?)
Medium and long term solutions are not the same thing.
We don't have the know-how, political will or capital to work out all of the solutions tomorrow, that much is clear. So while wind turbines aren't realsitic long-term, they are great for the time being, especially in countries where there's lots of wind and offshore. The same goes for bioethanol - ideally we'd like our vechiles to run from super-efficient batteries charged from solar power stations. We don't yet have the technology to make this happen, so it makes sense to let Bioethanol work for us in the mean time.
Solar energy seems like the most likely answer to our problems, long term.
We're begining to have the technology to utilise the sun's energy and Gibson says this is very much where he sees our future, long term. We have technologies in the making which should lead to us being able to efficiently heat our homes, produce electricity and prodcue hydrogen for use a clean fuel (figure 1). Great.
Figure 1
Energy from the sun can help us heat our homes and be captured and stored as energy. We can also generate electricity using photovoltaic cells and use this to split water split water into oxygen and hydrogen gas. Hydrogen is super high in energy and could be a clean, powerful fuel for the future.
Hope you enjoyed the gems.
Notes
[1] FRS stands for 'Fellow of the Royal Society'. The Royal Society is a prestigious club for scientists of high renown. Originally the club served as forum for an early form of peer review (see the benchtwentyone article on the subject for more information), in that scientists could meet with each other to openly discuss ideas and receive feedback. Voicing one's ideas in this elite club meant that scientists could give each other advice and share ideas without fear of being copied before they could get their theories perfected.